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A CELLULAR ANALOGY FOR THE ELASTIC­
PLASTIC SAINT-VENANT TORSION PROBLEM

DAVID JOH:-lSO:-l
Department of Civil Engin~'t:ring. North East London P..,lytl:\:hnic. London. U.K.

(R('('('il'cd (, April lWi7 ; itl rcl'ised Jimll 6 OCf,,!>a 1987)

Abslracl-Thc Saint-Venant torsion problem is solwd by a "cellular analogy" in which solid
sections arc idealized as multi-cdled structures. The shear flows in the cells are determined by the
enforcement ('I' gc('metric compatibility on the complete St:t of cells. The method thus provides a
mcans for the dir~-ct dctermination of shear fl ..,ws and stresSt:s and is shown to provide comparable
,I\;curacy to a warping displacement approach in the caSt: of dastic 'lnalysis. The method is also
shown t" he particularly convenil."nt for clastic-plastic analysis. For a pure clastic-pure plastic
mall."rial. lhl." shl."ar Ilow bccoml."s constant once the shl."ar stress in a cl."ll has rl."ached its yidd value.
Thc analysis thl."rd""fl· simplilics as plasticity progrl."sses. which permits thl." eHidl."nt (kterminati'>n
of tl,... <'lastit: plastit: rl."sponse. i\ rl."t:tangular secti,'n example is used to dcmonstrah: the ability (If
thl." ml."th,'d 10 a"curatdy predict the dastic plastic resp,Hlse of rectilinearly h'lIllldcd s~-ctions

without Itltcrnal corners. Sections with inll."rnal corncrs arc modelled less accurately duc to the
prcsent:1." of m;uimal dastic shear stressl."s which 'lrl." not parallel to thl." si..ks of the sl."ction. This
1'..atufI" is cXl."mplili,,·d by thc consideration of an l-set:tion.

INTRODUCTION

For geometrically regular sections. the clastic Saint-Venant torsion problem may be solved
analytically using either a stress or a displacement function approach[l. 2]. Numerical
methods, for example the finite dement tl.'Chnique. may also be applied on either basis[3,4J
for tht.: analysis of irregular sections. Warping displacement formulations ure generally
more convenient for the treatment of hollow sections and ure more readily extended to
deal with problems involving non-uniform torsion[5]. although hybrid approuches[6] are
sometimes required to improve the satisfaction of the zero normal shear stress boundary
condition.

In Saint- Venant (unrestrained) torsion anulysis, the shear stress distribution is generally
the feature of primary interest. Regardless of whether a stress or a wurping function is
being employed, shear stress evaluation requires a subsidiary calculation following the
determination of the selected function. Feldman[7} has proposed an alternative approach
whereby the shear stress components are used as the primary variables of the problem and
arc thereby determined directly. The mt.:thod suggested by Feltlman is not readily adapted
to an automated analysis since it requires the formation of a set of combined equilibrium
and compatibility equations in a manner which is dillicult to systematize. Also, the resulting
equations arc neither symmetric nor banded so that the achievable computational etliciency
is low.

In this paper, Feldman's direct shear stress determination approach is given a physical
interprctation as a "cellular analogy". This interpret.ltion immediately suggests the usc of
tht.: she.lr flow theory as employt.:d in multi-celled, thin-wallt.:d section analysis. Such an
analysis[R], assumes constant shear flows in each cell so that 10ngitudin.t1 equilibrium is
automatically satisfied and the shear flows may be determined from the enforcement of the
compatibility requirements of the individuul cells. The method is therefore. in essence. a
flexibility method and the principal matrix is a flexibility one whieh is both symmetric and
banded. Furthermore. as demonstrated here. the formulation is readily extended to the
determination of the rotational (torsional constant) response and to elastic-plastic analysis.
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Fig. I. Rectangular cell analogy.
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ELASTIC ANALYSIS

The cellular analoffY
It is presumed that the stress analysis of a prismatic, homogeneous rod subjected to

uniform torsion is required on the assumption that the displacement magnitudes and
material properties arc such that a linear response will be obtained. The rectangular portion
of the section shown in Fig. I(a) will be idealized as the equivalent rectangular cell shown
in Fig. I(b), where the structural material has been concentrated into equivalent thin walls
at the boundaries of the cell. The complete section is sub-divided. in this way. into n cells,
and constant shear flows arc presumed to exist in each cell. A typical internal cell, i, will be
adjacent to four further cells as shown in Fig. 2 and the resulwnt shear flows in the walls
of cell i will be as shown in Fig. 3. where the thicknesses of the cell walls have been determined
by application of the analogy given in Fig. I. The resultant shear 110ws of Fig. 3 will satisfy
the equilibrium requirements in the longitudinal direction of the rod and the compatibility
of the cell will be ensured if

f(~) ds = lA,GO' (I)

where q is the resultant shear 1100v. t the cell wall thickness. s is measured along the cell
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walls. A, the area enclosed by cell i. G the modulus of rigidity. and ()' the uniform rate of
twist.

By applying eqn ( I) to each cell in tum. a complete set of compatibility equations may
be established in the form

or

where

,(s,) ,(Sl) _"l Gil'L - if, - L - ifj - ..A, {7

j~k.l.m." t I l=k.l.m." t I

Fq = a

qt = {ql." .• q,•...• q,,}

at = 2GO':A I" ....4,•.... A.}.

(i = I-n) (2)

(3)

The solution of eqn (3) ft1r the unknown shear !lows. (I. enables the shear stress response
to be obtained directly. The resultant shear 110w in a given cell wall is divided by the waWs
thickness to obtain the shear stress component. t,. in the dircl.:tion of thc shcar flow. sinl.:c.
by the definition of shear 110w

(4)

The rotational response may also be readily determined sincc. for the overall equilibrium
of thc scction. thc applicd torquc. r. is given by[XI

T= 2, A,Q,....
, - I

so that the torsion wnstant, J. may be obtained as

"
T 2 L AJI,

J =GO' = '~O'

(5)

(6)

Numaicu/examp/es
The cellular analogy method has been applied to the clastic torsional analysis of a

squan: section. using. on account of symmetry. an eighth of the section. in which the zero
resultant shear nows along the lines of symmetry were modelled by the usc of appropriate
zero sit ratios in eqn (3). To compare the performance of the cellular analogy with other
approaches. the square section was re-analysed with progressively liner sub-divisions by
both the cellular analogy and by the finite element method using linear triangular clements
based on both warping and stress functions. The results of these analyses are given in Table
I from which it may be seen th.tt. for this section. the performance of the cellular analogy
is slightly inferior to that of the /inite clement method based on a warping function and
that both of these solutions arc superior to the stress function based lInite clement approach.

The evaluation of the cellular technique for more demanding elastic torsional problems
was investigated by a consideration of the L-section shown in Fig. 4(a). Symmetry was
again employed to redul.:c the analysis to one halfof the section. and comparative solutions
were obtained by both stress and displacement function finite element formulations. applied
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Table I. Square (ll x ll) section comparison
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:"'c>. of Cell Warping Stress
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15 -t.5S V:! -t.:!O
:!S -t.6'! Vb -t.35
55 -t.75 -t.7X -t.-ts

to both linear triangular elements and quadratic isoparametric elements. All the linear
element analyses were based on a similar. regular mesh. whilst the mesh for the quadratic
analyses was as shown in Fig. 4(b).

Table 2 compares results from the analyses with a reference solution obtained from a
quadratic tinite clement solution. based on a finer net. for which the stress and displacement
formulations gave similar results. It may be observed that the performance of the cellular
analogy is again comparable to that of the linear warping displacement finite element
approach. The linear stress function analysis is again inferior but may be seen to become
competitive if usc is made of a quadratic formulation. which significantly improves the
modelling of the stress function.

It may therefore he concluded that the cellular analogy will provide a stress solution
which is comparahle to that ohtainahle from a linear warping function hased approach.
The advantage of using the analogy is therefore not in its improved accuracy but in the
simplicity of the formulation which requires minimal clrort in the estahlishment of the
required linear equations. eqns (3). and in the post-equation solution stress determin:ttion.
The use of stress variables is also advantageous in clastic-plastic analysis as will be illustrated
in the next section.
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! .It P (Fig. -t(a))

(xT/tI')

Cellular analogy
L.inear FE--warping function
L.inear FE -stress function
Quadratic FE-warping funclion
Quadratic FE-stress funclion

Refcrcnce FE

100
10K
S-t
56
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0.13S
0.133
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O.I-t'l
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The analysis of the previous section will be extended using the previous structural
modd with modified material behaviour characteristics.

(a) The material is perfectly elastic-plastic so that: (i) for any shear strain " < /p:
! = Ci': (ii) for any shear strain " ~ i'p: ! = !p: where subscript p indicates pure plastic.

(b) Elastic unloading (known to occur in some situations[9]) does not take place.
(c) The directions of all the plastic shear stresses and of the maximum elastic stress

component are parallel to a cell wall direction.
(d) Plasticity extends either from a section boundary or from an existing plastic zone.

The cellular analogy allows a particularly simple elastic-plastic formulation to be estab­
lished on the basis of these assumptions. In an elastic zone. the equilibrium and compatibility
requirements of eqn (3) will be fulfilled in conjunction with the material law given by
assumption (a)(i). In a plastic zone, equilibrium and the material law of assumption (a)(ii)
will be fulfilled by the incorporation in yielded cells of constant shear flows, which are just
adequate to maintain the pure plastic shear stress in the critical walls of the cells. Since the
analogy does not involve deformations in plastic zones. a flow rule is not explicitly invoked
and the solutions obtained will be lower bounds, the accuracy of which will depend on thc
c10sencss to the "cxact" stress pattcrn of the stress distributions permitted by assumptions
(c) and (d).

The computational procedure adopted is to first undertake an elastic analysis at an
aroitrary rotation parameter. From this analysis. it follows. oy assumption (c), that an
examination of the shear stresses in the walls of the cells will identify a critical cell in which
the maximum elastic shear stress is present. Assumptions (a) and (c) then permit a linear
extrapolation to oe used to establish directly the precise rotation at which the shear stress
in the critical cell just reaches the pure plastic value. It then follows from assumptions (a),
(0) and (d) that the shear !low in the critical cell will remain constant under increasing
rotation in order that the shear stress in the critical wall shall remain at the pure plastic
value. In all suosequent analyses. the number of unknown shear !lows is therefore reduced
by one and suostitution of its constant value is made for the shear !low in the critical cell.
With this amendment. the analysis is therefore repeated at a specified. slightly increased
rotation. from the results of which a further critical cell may be identified. This new critical
cell is treated in the same way as the previous one. and repetition of the sequence allows
the complete elastic-plastic response to be followed. as illustrated in the examples which
follow.

Renallyu/ar sec/ioll

The clastic-plastic behaviour of a rectangular section of proportions 2: I has been
examined. A quarter of the section was analysed. using 50 square cells in one case and 200
square cells in a second analysis. The response of the section to uniform torsion is
illustrated in Fig. 5. where the results of the cellular analogy analyses are compared with
an existing analytical solution[ I0]. The results arc presented nondimensionally. having been
sc~i1ed in proportion to the fully plastic (Tp ) torque predicted by the sand-heap[ll] analogy,

Both cell sub-divisions may be seen to produce similar predictions which are in close
agreement with the analytically calculated response. The development of plasticity in the
section (based on the 200 cell analysis) is illustrated in Fig. 6. Plasticity may be seen to
originate from the location of the maximum elastic shear stress in the middle of the longer
side and to progressively develop towards the fully plastic distribution predicted by the
sand-heap analogy.

I-Sec/ioll

A quarter of an I-section was analysed. first using 196 similar square cells, as shown
in Fig. 7(a), and second using an irregular net of 371 cells (Fig. 7(b». The rcsults of the
two analyses are shown in Fig. 8. together with results from a published finite element
analysis[5]. The initiation of plasticity. indicated by the lowest designated points in each
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case. is seen to vary considerably between the two cell analogy analyses which is a reflection
of the dilliculty experienced by the coarser analysis in accurately modelling the elastic stress
concentration .It the internal corner. However. the subsequent clastic--plastic response is
largely unaffected by the predicted point of the initial yidd. as is illustrated by the subsequent
correspondence of the two sets of cellular analogy results.

The rotational responses given by the cellular analogy and finite element analyses arc
generally similar in nature but the finite element analysis predicts both a rather higher fully
plastic capacity for the section and a somewhat stiffer elastic-plastic response. Both of these
features reflect the lower hound nature of the cellular analogy upproach and mtty be related
to the treatment of the shear stress distribution in the region of the internal corner. In this
area of the section the resultant shear stresses arc not parallel to either of the intersecting
edges of the section and assumption (c) of the clastic-plastic cellular analogy analysis is
therefore invalid in this n:gion. The application of assumption (c) in the internal corner
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vicinity will, in fact, result in the underestimation of the maximum elastic shear stresses in
this area. This explains (Fig. 9) the relative reluctance of plasticity to develop inwards from
the internal corner, except along continuations of the edges, where the assumption of stress
direction being parallel to an edge will be approximately fulfilled.

The elastic shear stresses along directions emanating from an external corner, say along
the diagonals of a rectangle, will also not be parallel to a section edge. However, in this
case such stresses arc not critical and plasticity docs not grow from the corner but rather
approaches from either side (Fig. 6). The clastic stresses at the interface of the encroaching
plastic regions will be edge-parallel and the type of error experienced at internal corners
does not therefore arise.

COMPUTATIONAL ASPECTS

The cellular analogy method is extremely straightforward and efficient from a com­
putational point of view. The effort involved in determining the equivalent cell properties
and in the determination of the shear stresses from the calculated shear flows is trivial. The
linear equations to be solved (eqn (3» will generally be similar in number to those required
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Table 3. ExtXution time comparison

"":thlld

Cdlular analogy
Linear FE-warping function
Quadratic FE-warping function

:-':0. of
variables

100
108
56

Time
(5)

3.~S

7.11
7.38

Time vanable
(s)

0.033
0.066
O.I}:!

for a finite element solution based on a linear warping displacement function. As with the
finite element solution. the linear equation set will be banded and symmetric and similar
bandwidths will generally be obtained for given section sub-divisions. However. the intro­
duction ofadditional cells will not require node renumbering with the cell analogy approach.
since the bandwidth is only dependent upon the cell ordering and the nodal numbering is
therefore immaterial.

An indication ofcomputational efficiency of the cellular analogy may be obtained from
Table 3. The table presents execution times for clastic analyses of the L-section (Fig. 4)
which resulted in solutions of comparable accuracy (Table 2). The time variable may be
seen to increase with the complexity of the representation. However. the reduced number
of variables required by the quadratic tinite clement method will make this the preferred
approach for more complex problems. for which the simpler formulations would require a
very large number of variables to achieve an acceptable degree of accuracy.

A particular attradion of the cell analogy approach is that the solution bel:omes
progressively quil:ker as plasticity is inwrporated. Following each solution. a further l:ell
enters the plastil: zone and its shear llow thereafter remains l:onstant. On subsequent re­
analysis. the number of unknown shear llows in eqn (3) is therefore reduced and the
solution elliciency is thereby improved.

CO:-.lCLlJSIONS

A cellular analogy has been prescnted. which has bcen shown to result in a particularly
simple formulation of the clastic plastic Saint- Vcnant torsion prohlem. The rCl.:tangular
shapt: adoptt:d for tht: analogous l.:ell limits the method to the treatn1t:nt of rectilinearly
boul1lkd st:l.:tions and tht: assumption of plastil.: sht:ar strt:ss orit:ntations being parallel to
a boundary has bt:en shown to result in the non-rigorous treatmt:l1t of sections with
re-entrant l.:orners.

In common with otht:r strt:ss bast:d mt:thods. tht: cellular analogy approach docs 110t
readily yield information on warping displact:l1lt:nts and is thus not rt:adily extended to
non-uniform torsional analysis. The method l.:an be applied to nlultiply-l.:onnected sections
by induding the I:ut-outs of such sections as additional cells. one cell for each cut-out
portion.

Despi te its limitations. the case of applil.:ation of the cellular method should wllllllend
itself and the analogy provides a perhaps unusual illustration of an application of thin­
walled structural theory to the analysis of solids.
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